# VEGETATION DYNAMICS OF ALPINE SUMMITS IN THE BOREAL FOREST ZONE, QUEBEC, CANADA

## Joannie Savard & Serge Payette











#### Boreal forest covers 70% of Quebec

From 47° N to 58° N

#### 3 major subdivision in the boreal forest

- Closed forest
  - North of the Temperate zone
  - 3 types of forests
- Open forest
- Forest tundra
  - South of the Arctic zone
- Four main tree species
  - Black spruce
  - White spruce
  - Balsam fir
  - White birch





- Occurrence of tundra vegetation on mountain summits
  - Old growth forest maintained for hundreds of years were burned
- Presence of arctic-alpine plant species
  - High exposition to sun and wind
  - Permafrost
  - Frost boils

#### Several possible impacts of global warming

- Tree establishment on open summits
- Local extinction of arctic-alpine plant species
- Lost of biodiversity in the boreal forest zone



### Study aims

- Study potential impacts of climate change on flora diversity of alpine tundra
- Explain the correlation existing between treeline altitude and latitude



#### 16 sites

- - 132 species recorded
- 14C dating of charcoal
- Bare ground area
  - Between 1% and 30%
- Organic matter pH
  - Between 3 and 4
- Soil texture
- Shannon Diversity and Evenness indices





 From 47° N to 55° N at 70° W

- Altitude of 600 to 1200 m
- Tundra summits of 8 ha to 80 ha



- Positive correlation between tundra area and time elapsed since last fire
  - R<sup>2</sup> = 0.62
- Positive correlation between bare ground and latitude
  - R<sup>2</sup> = -0.56
- Weak correlation between time since last fire and latitude
  - R<sup>2</sup> = 0.33
  - $p > 0.05 \rightarrow not significant$
- Positive correlation between time since deforestation and latitude
  - R<sup>2</sup> = 0.66
  - Northern sites were opened earlier than southern ones







#### Main factors affecting diversity and species frequency

- Latitude
- Summit area
- Bare ground cover
- Latitude is the main factor explaining the frequency of many key species
  - Empetrum nigrum (R<sup>2</sup> = 0.29)
  - Alectoria ochroleuca (R<sup>2</sup> = 0.86)
  - Cladonia mitis (R<sup>2</sup> = 0.57)
  - Flavocetraria nivalis (R<sup>2</sup> = 0.44)
  - Dicranum elongatum (R<sup>2</sup> = 0.43)
  - Ptilidium ciliare (R<sup>2</sup> = 0.34)



#### Tundra area explains changes in diversity

- H' Index (R<sup>2</sup> = 0.67)
- J' Index (R<sup>2</sup> = 0.44)
- Total species number (R<sup>2</sup> = 0.28)
- Lichen species number (R<sup>2</sup> = 0.32)
- Cladonia amaurocraea (R<sup>2</sup> = 0.36)
- Cetraria nigricans (R<sup>2</sup> = 0.49)
- Bare ground cover explains changes in frequency of some key species
  - Arctous alpina (R<sup>2</sup> = 0.41)
  - Diapensia lapponica (R<sup>2</sup> = 0.41)
  - Cladonia stygia (R<sup>2</sup> = 0.41)



| Variable           | Main explicative | Direction | Model                 |
|--------------------|------------------|-----------|-----------------------|
|                    | factor           | of change | <b>R</b> <sup>2</sup> |
| H' Index           | Summit area      | 7         | 0.67                  |
| Total species #    | Summit area      | 7         | 0.71                  |
| Vascular species # | рН               | 7         | 0.61                  |
| Lichen #           | Bare ground      | 7         | 0.62                  |
| A. alpina          | Bare ground      | 7         | 0.54                  |
| D. laponnica       | Last fire        | 7         | 0.98                  |
| E. nigrum          | Latitude         | 7         | 0.54                  |
| K. procumbens      | Summit area      | 7         | 0.59                  |
| A. ochroleuca      | Latitude         | 7         | 0.86                  |
| C. amaurocraea     | Summit area      | 7         | 0.86                  |
| C. mitis           | Latitude         | 7         | 0.71                  |
| C. nigricans       | Summit area      | 7         | 074                   |
| C. stygia          | Bare ground      | 7         | 0.65                  |
| F. nivalis         | Latitude         | 7         | 068                   |
| D. elongatum       | Latitude         | 7         | 0.80                  |
| G. corralioides    | рН               | 7         | 0.90                  |
| P. ciliare         | Latitude         | 7         | 0.71                  |

- In agreement with the theory of succession after a disturbance
  - Highest species diversity soon after a disturbance
  - Decrease of species number over time
- Number of species closely associated with tundra area
  - In accordance with the theory of Insular Biogeography (MacArthur & Wilson, 1963)
  - A large area can shelter more species than a small one
- Species respond strongly to factors associated with climate
  - Latitude
  - bare ground cover
  - tundra area



- Climate do not have much influence on fire frequency
  - Climate influence on post-fire successional patterns only
- □ Little Ice Age
  - Post-fire tundra associated with colder climate
- Scenario of global warming
  - Lost of arctic-alpine species
  - Lost of ecosystems caused by the progression of treeline and forest



## **Thank you!**

## **Questions?**

