

Remote Sensing of Human Impact on the Position and Structure of the Northern Treeline

Ekaterina Shipigina & Gareth Rees

Scott Polar Research Institute University of Cambridge

es377@cam.ac.uk wgr2@cam.ac.uk

Background

Relationship between human impact on vegetation and its feedback of vegetation??

Study area: Northern Europe

- Most industrially developed region of the Arctic and Sub-Arctic
- Significant human impact on its vegetation in forest, pre-tundra and tundra zones
- Possibly a link between human activity and the position and structure of treeline

Human impact: hotspot test areas

Types of human impact: atmospheric emissions

- Emissions of sulphur dioxide and heavy metals have adverse effect on physiological processes of plants
- Transported over long distances, accumulate and migrate in the ecosystem's components
- Main source: copper-nickel smelters

Monchegorsk, Murmansk Region, Russia

Human impact: fires

- Natural causes: lightnings, dry seasons, etc.
- Result from human activity: BBQs, industrial emissions, etc.

Information on fires retrievable by remote sensing:

- locations
- > areas
- boundaries
- regimes
- regeneration of plants

Monchegorsk, Murmansk region, Russia

Human impact: infrastructure, mining, oil and gas development

- Requirement of physical removal of trees.
- It is reflected on remote sensing data well.

Usinsk, Komi Republic, Russia

Human impact: logging

- Recent and old logging areas are detectable from remote sensing data.
- Easy to detect recent cutting areas due to their straight boundaries.
- Analysis by manual digitising takes a lot of time.

Kovdor, Murmansk region, Russia

Monchegorsk, Murmansk region, Russia

Human-mediated impact: grazing

 Destruction of plant community structure through incorrect grazing management.

 Mapping grazing through biomass estimates, NDVI, LAI, classification, etc.

Computer analysis: NBR, image classification

- Human impact are shown in multispectral and multi-temporal images clearly.
- Non-vegetated areas can easily be identified visually in multi-spectral images.
- In some cases this process can be automated.
- Monitoring it and mapping the distribution of the state of vegetation on remote areas.
- Detailed computer processing of images requires extra data.

Hybrid classification

Computer analysis: vegetation indices

NVDI mapping of air pollution impact

NDVI difference of real and modelled NDVI

Outlook and future work

- Identification of human hotspots close to the treeline;
- Selection of automated methods for the detection of human impact of different types;
- Determination of the most appropriate computer methods for the detection of each type of human impact using remote sensing data;
- Development of computer methodology for the detection of human hotspots based on remote sensing;
- Creation of a map showing the position and structure of the treeline in the areas of human impact.

Thank you

